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Motivation

Addressing the unique challenges of literary texts:
o Rich and complex contexts.
o Jubtle relationships between characters and events.

Evaluating current models to identify limitations in understanding
and answering questions from literary narratives.

Literature holds deep, complex stories that require careful
understanding—can machines keep up?
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Introduction @

Objective

o CGompare performance of BERT-based models for question-answering tasks focusing on plot analysis of literary
texts.

o Analyze how well these models understand and interpret complex narrative contexts.

Why BERT ?

o Handles context-sensitive language understanding.
o Excels in tasks like question answering, making it ideal for analyzing complex plots.



WOJVINYWS3AINS

=
)
=
o
»

The Hound of Baskervilles
Choose One

Valley of Fear

A study in Scarlet

Workflow

Remove Stopwords

Split text into chunks

=
o
=
S
»

BERT

spanBERT

RoBERTa

Compare Performance




WOJVINYWS3AIS

Data Preparation and Data Engineering

Source: Text extracted from Project Gutenberg.
o 3 Books of Arthur Gonan Doyle:

m [he Hound of Baskervilles

m \Valley of Fear

m A Study in Scarlet

Preprocessing:

o Removed headers, footers, special characters; standardized spacing.
o Removed stopwords and lowercase text.

Chunking: Divided text into 512-word chunks to fit model constraints.
Pipeline: Configured BERT model for question-answering tasks.

Input Formatting: Paired questions with relevant chunks for processing.
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Questions Chosen

1o supports Sherlock Holmes on the investigation?
10 is the victim?

10 killed the victim?

nere does the murder take place?

nat is the murder weapon?

nen does Sherlock Holmes begin to unravel the details that lead to solving the murder?

How does Sherlock find the murderer?

W
W
W

natist
nat is t

natist

e motive for the murder?
e evidence that led Sherlock Holmes to the murderer?

ne plot twist of the story?
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BERT (2)

- bert-base-uncased
- bert-large-cased

Models

RoBERTa (4)

- roberta-base-squad2

- roberta-large-squad?
- tinyroberta-squad?

- roberta-base-squad2-

distilled

spanBERT (2)

- spanbert-base-cased
- spanbert-large-cased
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BERT (2)

- bert-base-uncased
- bert-large-cased

Models

bert-base-uncased:
e 110M parameters
e No differentiation between capitalized and uncapitalized words
e Strips accent markers in words

bert-large-cased:
e 340M parameters
e [Distinguishes between capitalized and uncapitalized words

Training objectives:
1. Masked Language Modeling (MLM) - learns bidirectional
representation of sentences
2. Next Sentence Prediction (NSP) - learns sequential order of
sentences
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roberta-base-squad2:
e 124M parameters

roberta-large-squad?2:
e 354M parameters

tinyroberta-squad2:
e Distilled version of base model using
TinvBERT approach
e [eacher: roberta-base-squad?
e ~62.5M parameters*

roberta-base-squad2-distilled:
e Distilled version of base model using
Hinton approach
e [eacher: roberta-large-squad?
e ~1/8M parameters™

RoBERTa (4)

- roberta-base-squad2

- roberta-large-squad?

- tinyroberta-squad?

- roberta-base-squad2-
distilled

* rough estimate according to some articles - no explicit number found

SQuAD2.0: Stanford Question Answering
Dataset

Consists of 100,000 questions with
50,000 unanswerable questions that look
similar to answerable questions

Distillation:

Prediction laver distillation - minimize

difference between the outputs of the
prediction layer between student &
teacher

o Hinton approach
Intermediate layer distillation - minimize
differences between hidden states &
attentions of student/teacher

o Before prediction layer distillation

o TinyBERT approach



https://arxiv.org/pdf/1909.10351
https://arxiv.org/pdf/1503.02531
https://docs.haystack.deepset.ai/v1.25/docs/model_distillation
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Models

spanbert-base-cased:
e 110M parameters

spanbert-large-cased:
e 340M parameters

SpanBERT has same model configuration as BERT, but differs in:
e Masking contiguous random spans (not random tokens)
e Span-boundary objective (SBO) - learns to predict content of masked
span without relying on individual tokens within the span

spanBERT (2)

- spanbert-base-cased
- spanbert-large-cased

10
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Results - A Study in Scarlet

Model Run Times - A Study in Scarlet
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SpanBERT/spanbert-large-cased H
SpanBERT/spanbert-base-cased -
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deepset/tinyroberta-squad2 -

Results - A Study in Scarlet

Model Run Times - A Study in Scarlet
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bert-base-uncased

bert-large-cased

deepset/roberta-

base-squad2 Lestrade

deepset/roberta-

large-squad2 Lestrade

deepsetitinyroberta-
squad2

Lestrade

deepset/roberta-
base-squad2-
distilled

Jefferson Hope

SpanBERT/
spanbert-base-
cased

Latin character, may

SpanBERT/
spanbert-large-
cased

Again, absurd suppose
sane man would carry
del...

Results - A Study in Scarlet
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BERT struggles to answer any questions given

bert-base-uncased

bert-large-cased

deepset/roberta-
base-squad2

deepset/roberta-
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distilled
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SpanBERT is just as bad as BERT, with the exception of the spanbert-large-cased model
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Results - A Study in Scarlet

Roberta models are the best performing - the most correct sensical answers to given questions

bert-base-uncased

bert-large-cased
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Analysis

Checklist Calculation
Create answer key to '/' Calculate frequency
the questions for of correct answers
each book
Graph
' - Graph number of
compa"so“ correct answer for
e Check if the models’ each model ino a
answer matches to bar graph
the answer key

16
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Analysis

Plot Analysis Accuracy of Different Bert Models: A Study in Scarlet

Il roberta
B spanbert
bert4 bert-large-cased 3 bert
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Count

Number of Correct Answers per Question: A Study in Scarlet

Analysis

S8 7

2.5

2.0 1

15

1.0 -

0.5

0.0

5 6
Question

10
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Analysis

Plot Analysis Accuracy of Different Bert Models: The Hound of Baskervilles
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Number of Correct Answers per Question: The Hound of Baskervilles
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Analysis

Plot Analysis Accuracy of Different Bert Models: The Valley of Fear
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Count

Number of Correct Answers per Question: The Valley of Fear
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Analysis
o BERT
o Pros:
m (Can be generalized to a variety of tasks, provided that it is fine-tuned
o (ons:
m Not able to generate sensical responses - probably due to undertraining
e RoBERTa
o Pros:
m durpassed both BERT and SpanBERT - delivered accurate & relevant responses
m Crucial pretraining methodology: dynamic masking & larger-scale datasets
m JStrong management of complex, context-dependent queries

e SpanBERT:
o Pros:
m Excelled in span-hased extractions
o (ons:
m lacked versatility for different tasks

23
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Conclusion

BERT is severely under trained, but was meant to be a generalizable model that can easily be
fine-tuned to certain tasks - gave parts of words, single words & sentences, etc.

SpanBERT was not even close to the correct answer - gave long sentences with punctuation.
Overall, RoBERTa worked the best with the lower-level questions - comprehension achieved

A
C

| models incorrectly answered complicated questions.
unking text into 512-token chunks added preprocessing complexity, but helped with

addressing some model limitations, especially on the compute resources available

24



